
Minix 3
going from educational showcase
to day-to-day productive use

History of micro kernels
• Early approaches

▫ IBM's hypervisor launching CP/CMS

• Microkernel designs
▫ Mach 3 (microkernel)

XNU (hybrid kernel) lauching the OS
 GNU Hurd

▫ MINIX (microkernel)
▫ Plan 9 (concepts)

• Specific implementations
▫ AmigaOS

Comparison monolithic / micro
Micro kernel Monolithic kernel

• Bootstrap mechanism
• Address space handling
• CPU allocation
• Interprocess Communication

(IPC)

• All from micro kernel
plus

• Memory Manager
• Scheduler
• Device drivers
• Basic file system

Comparison monolithic / micro
Hypervisor

• Based on „any“ kernel
plus

• Virtualisation layer for
▫ any hardware

component
▫ any virtual device

Key principles

• Its all about abstraction!
▫ Top down approach
▫ Implicite hierarchy
▫ Model

• Focusing following principles
▫ Separation of Concerns
▫ Components

Separation of Concerns

• Mentioned first by Dijkstra (1974)
• Makes the abstraction more cohesive

▫ Weaker coupling between „modules“
▫ Explicite (abstract) contract for using the module

• Commonly used in many engineering domains
▫ Layer-based approaches, e.g. block device/file

system

• Leverages abstraction
▫ As a result you also get a hierarchy for free!

• Drill down process ends typically too early!

Components

• A Component encapsulates related functions
• Abstract interface and implementation

▫ Top-down approach, interface first!
• Encapsulation

▫ State is manipulated via interface (contract) only!
• Information hiding

▫ No implementation details are exposed
• Own lifecycle

▫ Starting/stopping/replacing is possible during
runtime

Prerequisites/Paradigm

• Abstraction!
▫ Top down approach

• Explicite interface first!
▫ Part of top-down

• Component driven
▫ Loose coupling, strong cohesion!

Current situation

• Very specific bare metal installation
▫ Hard to install on up-to-date hardware

• Programmed against very specific hardware
▫ Intel is widely spread, but not the standard

Installation

• Very specific bare metal requirements
▫ X86: IDE/SATA CD/DVD-ROM
▫ BB: sd card only

• Its not possible via
▫ Plain PXE (ipxe make the trick with a fix)
▫ USB

• Hard to install on SBC

HW support & implementation

• Programmed against very specific hardware
▫ Vendor specific details are mandatory

• Concrete examples
▫ kbd driver paniced, if no kbd HW found
▫ PCI driver expects a device at bus 0, device 0

How to make it better

• Kernel
• Services
• Damons

Kernel

• Separation of Concerns
▫ Memory model
▫ Instruction set

• Results
▫ Reuse the memory model code
▫ Make the instruction set relevant code smaller

Services
• Circular dependencies

▫ VM is circular with
IPC, RS and VFS

▫ RS is circular with
DS and VM

• Most startup services are
interdepend with each
other

Services

• Resolve cyclic dependencies
• Implement drop-in replacement scheduler
• Allow multiple instances of services
• Separate scheduling for „real-time“ and „batch

processing“

Demons

• USB for minix arm
▫ Quite monolithic
▫ One process contains HC and USBD

• Drill down the SoC
▫ One service per host controller
▫ Host controller registers at USBD
▫ Necessity for x86 based USB ([E|O|U|X]HCI

Concrete example - DevMgr

• Contains busses
• Devices belong to busses
• Hot plug

Abstract devmgr model

Devmgr sequence diagram

Functionality of devmgr

• Single point of authority
▫ Tree structure for bus and devices
▫ Status (driver loaded/shared/exclusive)

• Simplifying dependencies
▫ Virtual devices will work, too! (file system)

Conclusion

• Need to accept the paradigm

• The right abstraction makes you powerful

	Slide1
	Slide27
	Slide28
	Slide29
	Slide22
	Slide3
	Slide8
	Slide12
	Slide14
	Slide4
	Slide13
	Slide5
	Slide23
	Slide9
	Slide11
	Slide10
	Slide6
	Slide16
	Slide17
	Slide20
	Slide18

